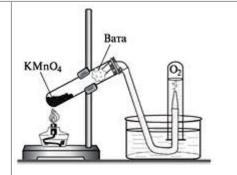
## Практическая работа «Получение, собирание и распознавание газов»

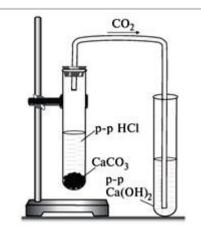

Задачи урока: применить на практике знания учащихся; закрепить умения и навыки обращения с лабораторным оборудованием; внести разнообразие в процесс повторения материала; повысить познавательный интерес к предмету.

**Оборудование и реактивы.** Штатив с пробирками, штатив с муфтой и лапкой, пробки с U-образной и прямой газоотводными трубками, спиртовка, лучинка, спички, вата, пробирка с пробкой, кристаллизатор с водой; раствор соляной кислоты, перманганат калия, вода известковая, мрамор.

| Порядок работы                                        | Задания                            | Наблюдения.<br>Выводы |  |  |  |
|-------------------------------------------------------|------------------------------------|-----------------------|--|--|--|
| Опыт 1. Получение, собирание и распознавание водорода |                                    |                       |  |  |  |
| В пробирку положите 1—2                               | Напишите уравнения реакций         |                       |  |  |  |
| гранулы цинка и прилейте раствор                      | получения и распознавания водорода |                       |  |  |  |
| соляной кислоты. Пробирку                             | в молекулярном виде, покажите      |                       |  |  |  |
| закройте пробкой с прямой                             | переход электронов в окислительно- |                       |  |  |  |
| газоотводной трубкой и наденьте                       | восстановительных реакциях         |                       |  |  |  |
| на нее еще одну пробирку кверху                       |                                    |                       |  |  |  |
| дном. Подождите некоторое время,                      | H₂ n                               |                       |  |  |  |
| чтобы она заполнилась водородом.                      |                                    |                       |  |  |  |
| Снимите верхнюю пробирку и                            | <b>M</b>                           |                       |  |  |  |
| проверьте наличие водорода, для                       | p-p                                |                       |  |  |  |
| чего поднесите ее отверстием к                        | HCI                                |                       |  |  |  |
| горящей спиртовке                                     | Zn                                 |                       |  |  |  |

Опыт 2. Получение, собирание и распознавание кислорода

В соответствии с рисунком соберите прибор и проверьте его на герметичность. В пробирку насыпьте примерно на 1/4 ее объема порошок перманганата калия и у отверстия пробирки положите рыхлый комочек ваты. Закройте пробирку пробкой с газоотводной трубкой. В сосуд с




Напишите уравнения реакций получения и распознавания кислорода водой опрокиньте пробирку, заполненную водой, предварительно закрыв отверстие пальцем, и вставьте в нее конец газоотводной трубки. Затем нагревайте пробирку с перманганатом калия. Сначала обогрейте всю пробирку. Затем постепенно передвигайте пламя от ее дна в сторону пробки. Когда пробирка заполнится кислородом, закройте ее под водой резиновой пробкой. Подтвердите наличие кислорода в пробирке тлеющей лучинкой

в молекулярном виде, покажите переход электронов в окислительновосстановительных реакциях

Опыт 3. Получение, собирание и распознавание углекислого газа

В пробирку внесите несколько кусочков мела или мрамора и прилейте немного разбавленной соляной кислоты. Быстро закройте пробирку пробкой с газоотводной трубкой. Конец трубки опустите в другую пробирку, в которой находится 2—3 мл известковой воды. Несколько минут наблюдайте, как через известковую воду проходят пузырьки газа, вызывая ее помутнение



Напишите уравнения реакций получения и распознавания углекислого газа в молекулярном, полном и сокращенном ионном видах

## Практическая работа «Изготовление моделей молекул углеводородов»

Задачи урока: закрепить умения и навыки обращения с лабораторным оборудованием;

Оборудование: набор моделей атомов

Ход урока: изготовить

Модели молекул бутана и изобутана.

Соберите модель молекулы н-бутана, используя для этого заводской набор моделей атомов или пластилин. Аналогична соберите модель молекулы изобутана. Учтите, что в бутане атомы углерода расположены по отношению друг к другу под углом 109°, т. е. углеродная цепь должна иметь зигзагообразное строение. В молекуле изобутана все связи центрального атома углерода направлены к вершинам правильного тетраэдра. Сравните строение этих углеводородов.

## Модель молекулы этилена.

Атомы углерода находятся во втором валентном состоянии (sp2-гибридизация). В результате, на плоскости под углом 120° образуются три гибридных облака, которые образуют три сигма-связи с углеродом и двумя атомами водорода. Р-электрон, который не участвовал в гибридизации, образует в перпендикулярной плоскости -связь с р-электроном соседнего атома углерода. Так образуется двойная связь между атомами углерода. Молекула имеет плоскостное строение.

## Модель молекулы ацетилена.

В молекуле ацетилена каждый атом углерода находится в sp-гибридном состоянии, образуя две гибридные связи, направленные под углом 180° друг к другу. Как в случае связей С-С, так и в случае связей С-Н возникает общее двухэлектронное облако, образующее освязи. Но в молекуле ацетилена в каждом из атомов углерода содержится еще по два р-электрона, которые не принимают участия в образовании освязей. Молекула ацетилена имеет плоский линейный «скелет», поэтому оба р-электронных облака в каждом из атомов углерода выступают из плоскости молекулы в перпендикулярном к ней направлении. При этом происходит также некоторое взаимодействие электронных облаков, но менее сильное, чем при образовании освязей. В итоге, в молекуле ацетилена образуются еще две ковалентные углерод-углеродные связи, называемые р-связями.